metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-Dichloridobis(ethyldiphenylphosphine-*κP*)platinum(II)

Wioleta Domanska-Babul, Jaroslaw Chojnacki* and Jerzy **Pikies**

Chemical Department, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952-PL Gdańsk, Poland Correspondence e-mail: jarekch@chem.pg.gda.pl

Received 13 June 2007; accepted 14 June 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.072; data-to-parameter ratio = 18.7.

In the title compound, $[PtCl_2(C_{14}H_{15}P)_2]$, the isomer from the reaction of potassium tetrachloridoplatinate(II) and ethyldiphenylphosphine, the Pt atom is in a square-planar geometry.

Related literature

For the related *cis*-dichloridobis(methyldiphenylphosphine)platinum(II), see Ho et al. (1982). For related literature, see: Domańska-Babul et al. (2007); Krautscheid et al. (1997); Porzio et al. (1980).

Experimental

m1956

Crystal data	
$[PtCl_2(C_{14}H_{15}P)_2]$	
$M_r = 694.45$	
Monoclinic, $P2_1/c$	
a = 14.2831 (6) Å	

b = 11.1025 (5) Å
c = 16.9556 (7) Å
$\beta = 106.677 \ (4)^{\circ}$
$V = 2575.69 (19) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 5.80 \text{ mm}^{-1}$

Data collection

```
Oxford Diffraction KM-4 CCD
  diffractometer
Absorption correction: analytical
  (CrysAlis RED; Oxford Diffrac-
  tion, 2006; Clark & Reid, 1995).
  T_{\min} = 0.232, T_{\max} = 0.501
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.072$ S = 1.105614 reflections

19512 measured reflections 5614 independent reflections

T = 120 (2) K

 $0.26 \times 0.14 \times 0.07 \text{ mm}$

5413 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.032$

300 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 2.88 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -1.23 \text{ e} \text{ Å}^{-3}$

Table 1		
Selected	bond lengths (Å).	

Pt1-P1	2.2633 (9)	Pt1-Cl1	2.3458 (9)
Pt1-P2	2.2517 (9)	Pt1-Cl2	2.3618 (9)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997): program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

WD-B and JP thank the Polish State Committee of Scientific Research (project No. 1 T09A 148 30) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2281).

References

- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Domańska-Babul, W., Chojnacki, J., Matern, E. & Pikies, J. (2007). J. Organomet. Chem. doi:10.1016/j.jorganchem.2007.04.045
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ho, K.-C., McLaughlin, G. M., McPartlin, M. & Robertson, G. B. (1982). Acta Cryst. B38, 421-425.
- Krautscheid, H., Matern, E., Kovacs, I., Fritz, G. & Pikies, J. (1997). Z. Anorg. Allg. Chem. 623, 1917-1924.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Porzio, W., Musco, A. & Immirzi, A. (1980). Inorg. Chem. 19, 2537-2540.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

© 2007 International Union of Crystallography

Acta Cryst. (2007). E63, m1956 [doi:10.1107/S1600536807029200]

cis-Dichloridobis(ethyldiphenylphosphine-KP)platinum(II)

W. Domanska-Babul, J. Chojnacki and J. Pikies

Comment

In the course of our studies upon the reactivity of $[(R_3P)_2MCl_2]$ towards $R'_2P-P(SiMe_3)_2$ (Domańska-Babul *et al.*, 2007) we have studied the reaction of $({}^{i}Pr_2N)_2P-P(SiMe_3)_2$ with $[(EtPh_2P)_2PtCl_2]$. The title compound was obtained unchanged in the synthesis.

The complex exhibits square-planar coordination that is typical for platinum(II) compounds. The platinum atom is 0.0556 (4) Å above the square plane. The structure is similar to that of $[(MePh_2P)_2PtCl_2]$ (Ho *et al.*, 1982). The square planar geometry is characteristic of complexes having less bulky tertiary phosphines. Significant deviation from planarity is observed with sterically bulky phosphines ligands, as noted in *cis*-dichlorobis(di-*t*-butylphenylphosphine)platinum(II) (Krautscheid *et al.*, 1997; Porzio *et al.*, 1980). The bond dimensions involving the platinum atom are typical of [*cis*-(*R*₃P)₂PtCl₂] compounds such as for [(MePh₂P)₂PtCl₂]. Weak intermolecular C—H…Cl interactions are also present.

Experimental

The compound was been obtained as yellow powder by the reaction of a solution of ethyl(diphenyl)phosphane in ethanol with a solution of potassium tetrachloroplatinate(II) in water. It was obtained in a crystalline habit from the reaction of $({}^{i}Pr_{2}N)_{2}P-P(SiMe_{3})_{2}$ with [(EtPh_{2}P)_{2}PtCl_{2}] a 1:1 molar ratio in THF. Crystals were obtained by recrystallization from pentane at 249 K

Refinement

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methylen C–H = 0.99 Å, aromatic C–H = 0.95 Å and U_{iso} (H)=1.2 U_{eq} (C) for aromatic CH, 1.3 for CH₂ groups and 1.5 for methyl groups.

Figures

Fig. 1. View of (I) (50% probability displacement ellipsoids)

cis-Dichloridobis(ethyldiphenylphosphine-κP)platinum(II)

Crystal data

$[PtCl_2(C_{14}H_{15}P)_2]$	$F_{000} = 1360$
$M_r = 694.45$	$D_{\rm x} = 1.791 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9761 reflections
a = 14.2831 (6) Å	$\theta = 2.9 - 32.5^{\circ}$
b = 11.1025 (5) Å	$\mu = 5.80 \text{ mm}^{-1}$
c = 16.9556 (7) Å	T = 120 (2) K
$\beta = 106.677 \ (4)^{\circ}$	Prism, yellow
$V = 2575.69 (19) \text{ Å}^3$	$0.26 \times 0.14 \times 0.07 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction KM-4-CCD diffractometer	5413 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
$0.75^{\circ} \omega$ scans	$\theta_{\text{max}} = 27^{\circ}$
Absorption correction: Analytical CrysAlis RED (Oxford Diffraction, 2006; Clark & Reid, 1995).	$\theta_{\min} = 2.9^{\circ}$
$T_{\min} = 0.232, \ T_{\max} = 0.501$	$h = -18 \rightarrow 18$
19512 measured reflections	$k = -14 \rightarrow 14$
5614 independent reflections	$l = -21 \rightarrow 13$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0399P)^2 + 6.0673P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.029$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.072$	$\Delta \rho_{\text{max}} = 2.88 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.10	$\Delta \rho_{\rm min} = -1.23 \text{ e} \text{ Å}^{-3}$
5614 reflections	Extinction correction: none
300 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	Uiso*/Ueq
Pt1	0.270906 (9)	0.459023 (11)	0.282544 (7)	0.01446 (6)
P1	0.15530 (6)	0.41497 (8)	0.34561 (5)	0.01523 (17)
P2	0.36679 (6)	0.29500 (8)	0.31639 (5)	0.01523 (17)
Cl1	0.36472 (8)	0.53298 (8)	0.20004 (6)	0.0278 (2)
Cl2	0.17113 (7)	0.62945 (9)	0.23685 (6)	0.0308 (2)
C1	0.1445 (3)	0.5374 (3)	0.4142 (2)	0.0167 (7)
C2	0.0551 (3)	0.5606 (3)	0.4295 (2)	0.0221 (7)
H2	-0.0001	0.5119	0.4043	0.027*
C3	0.0462 (3)	0.6541 (3)	0.4811 (2)	0.0256 (8)
Н3	-0.0152	0.6699	0.4904	0.031*
C4	0.1265 (3)	0.7245 (3)	0.5193 (2)	0.0268 (8)
H4	0.1207	0.7873	0.5557	0.032*
C5	0.2154 (3)	0.7028 (4)	0.5043 (2)	0.0287 (8)
H5	0.2705	0.7513	0.5301	0.034*
C6	0.2243 (3)	0.6101 (3)	0.4515 (2)	0.0244 (8)
Н6	0.2852	0.5964	0.441	0.029*
C7	0.1573 (3)	0.2795 (3)	0.4077 (2)	0.0179 (7)
C8	0.0867 (3)	0.1887 (3)	0.3837 (2)	0.0258 (8)
H8	0.0362	0.1962	0.3333	0.031*
C9	0.0898 (4)	0.0879 (4)	0.4328 (3)	0.0357 (10)
Н9	0.0402	0.0284	0.4168	0.043*
C10	0.1648 (4)	0.0736 (4)	0.5049 (3)	0.0386 (11)
H10	0.1679	0.0031	0.5373	0.046*
C11	0.2353 (4)	0.1624 (4)	0.5297 (2)	0.0316 (9)
H11	0.2874	0.1524	0.5788	0.038*
C12	0.2297 (3)	0.2667 (3)	0.4825 (2)	0.0227 (7)
H12	0.2758	0.3296	0.5016	0.027*
C13	0.0365 (3)	0.4052 (4)	0.2677 (2)	0.0225 (7)
H13A	-0.0121	0.3729	0.2937	0.029*
H13B	0.0152	0.4873	0.2475	0.029*
C14	0.0376 (3)	0.3256 (4)	0.1944 (2)	0.0300 (9)
H14A	0.0771	0.3641	0.1629	0.045*
H14B	-0.0294	0.3148	0.159	0.045*
H14C	0.0657	0.247	0.2144	0.045*
C15	0.2996 (3)	0.1563 (3)	0.2819 (2)	0.0181 (7)
C16	0.2805 (3)	0.0686 (3)	0.3338 (2)	0.0212 (7)
H16	0.2992	0.0818	0.3916	0.025*
C17	0.2339 (3)	-0.0384 (3)	0.3015 (3)	0.0237 (8)
H17	0.2212	-0.098	0.3373	0.028*

C18	0.2061 (3)	-0.0577 (4)	0.2169 (3)	0.0249 (8)
H18	0.1767	-0.1319	0.1951	0.03*
C19	0.2210 (3)	0.0305 (4)	0.1648 (3)	0.0298 (9)
H19	0.1994	0.0187	0.1069	0.036*
C20	0.2678 (3)	0.1370 (4)	0.1970 (2)	0.0280 (8)
H20	0.2782	0.1974	0.1607	0.034*
C21	0.4359 (2)	0.2718 (3)	0.4232 (2)	0.0184 (7)
C22	0.4926 (3)	0.1674 (4)	0.4455 (3)	0.0284 (8)
H22	0.4899	0.1057	0.4061	0.034*
C23	0.5528 (3)	0.1547 (4)	0.5254 (3)	0.0332 (9)
H23	0.5913	0.0839	0.5402	0.04*
C24	0.5576 (3)	0.2429 (4)	0.5837 (2)	0.0333 (10)
H24	0.5987	0.2325	0.6383	0.04*
C25	0.5021 (3)	0.3470 (4)	0.5622 (2)	0.0295 (9)
H25	0.5046	0.4077	0.6023	0.035*
C26	0.4427 (3)	0.3623 (3)	0.4817 (2)	0.0225 (7)
H26	0.4066	0.4348	0.4666	0.027*
C27	0.4649 (3)	0.2823 (4)	0.2668 (2)	0.0232 (7)
H27A	0.4863	0.1972	0.2697	0.03*
H27B	0.4379	0.3034	0.2079	0.03*
C28	0.5551 (3)	0.3615 (4)	0.3040 (3)	0.0313 (9)
H28A	0.5372	0.4465	0.2938	0.047*
H28B	0.6065	0.3414	0.2783	0.047*
H28C	0.5791	0.3472	0.3634	0.047*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Pt1	0.01654 (8)	0.01163 (8)	0.01519 (8)	-0.00052 (4)	0.00450 (5)	0.00112 (4)
P1	0.0155 (4)	0.0138 (4)	0.0161 (4)	0.0003 (3)	0.0041 (3)	-0.0004 (3)
P2	0.0140 (4)	0.0137 (4)	0.0174 (4)	-0.0005 (3)	0.0037 (3)	-0.0013 (3)
Cl1	0.0330 (5)	0.0240 (5)	0.0315 (5)	-0.0059 (4)	0.0174 (4)	0.0040 (3)
Cl2	0.0351 (5)	0.0213 (4)	0.0369 (5)	0.0105 (4)	0.0121 (4)	0.0129 (4)
C1	0.0216 (17)	0.0132 (16)	0.0164 (16)	0.0034 (12)	0.0072 (14)	0.0024 (12)
C2	0.0253 (19)	0.0192 (17)	0.0244 (18)	-0.0008 (14)	0.0111 (15)	0.0020 (14)
C3	0.034 (2)	0.0206 (18)	0.0275 (19)	0.0058 (15)	0.0176 (16)	0.0023 (15)
C4	0.045 (2)	0.0164 (17)	0.0201 (17)	0.0039 (16)	0.0118 (16)	-0.0002 (14)
C5	0.033 (2)	0.0226 (19)	0.027 (2)	-0.0041 (16)	0.0029 (16)	-0.0045 (16)
C6	0.0220 (18)	0.0225 (18)	0.0272 (18)	0.0005 (14)	0.0045 (15)	-0.0034 (15)
C7	0.0203 (16)	0.0157 (16)	0.0198 (16)	-0.0002 (13)	0.0090 (13)	-0.0010 (13)
C8	0.0266 (19)	0.0230 (19)	0.030 (2)	-0.0086 (15)	0.0116 (16)	-0.0073 (15)
C9	0.051 (3)	0.024 (2)	0.040 (2)	-0.0164 (19)	0.024 (2)	-0.0079 (18)
C10	0.074 (3)	0.0173 (19)	0.032 (2)	-0.006 (2)	0.028 (2)	0.0026 (17)
C11	0.052 (3)	0.0221 (19)	0.0204 (18)	0.0032 (18)	0.0101 (17)	-0.0003 (15)
C12	0.0294 (19)	0.0163 (17)	0.0228 (17)	0.0001 (14)	0.0081 (15)	-0.0020 (14)
C13	0.0164 (16)	0.0253 (19)	0.0225 (17)	0.0018 (14)	0.0003 (13)	-0.0030 (14)
C14	0.0258 (19)	0.036 (2)	0.0238 (19)	0.0035 (17)	-0.0006 (15)	-0.0048 (17)
C15	0.0174 (16)	0.0125 (16)	0.0232 (17)	0.0018 (13)	0.0036 (13)	-0.0027 (13)

C16	0.0215 (17)	0.0209 (17)	0.0210 (17)	0.0003 (14)	0.0060 (14)	-0.0007 (14)
C17	0.0224 (19)	0.0180 (18)	0.032 (2)	-0.0005 (13)	0.0097 (16)	0.0003 (14)
C18	0.0199 (17)	0.0193 (18)	0.034 (2)	-0.0024 (14)	0.0058 (15)	-0.0071 (15)
C19	0.033 (2)	0.028 (2)	0.025 (2)	-0.0058 (16)	0.0031 (17)	-0.0062 (16)
C20	0.038 (2)	0.0209 (19)	0.0211 (18)	-0.0082 (16)	0.0017 (16)	0.0010 (15)
C21	0.0155 (15)	0.0182 (17)	0.0182 (16)	-0.0031 (13)	-0.0006 (12)	-0.0014 (13)
C22	0.0238 (19)	0.0234 (19)	0.034 (2)	0.0019 (15)	0.0019 (16)	0.0030 (16)
C23	0.025 (2)	0.030 (2)	0.038 (2)	0.0001 (16)	-0.0030 (17)	0.0126 (18)
C24	0.028 (2)	0.042 (2)	0.0219 (19)	-0.0080 (18)	-0.0055 (15)	0.0113 (18)
C25	0.031 (2)	0.034 (2)	0.0212 (18)	-0.0110 (17)	0.0038 (15)	-0.0035 (16)
C26	0.0209 (17)	0.0206 (18)	0.0252 (18)	-0.0030 (14)	0.0051 (14)	-0.0007 (14)
C27	0.0213 (17)	0.0238 (18)	0.0263 (19)	0.0030 (14)	0.0099 (15)	-0.0041 (15)
C28	0.0193 (18)	0.043 (2)	0.032 (2)	-0.0063 (17)	0.0092 (16)	-0.0061 (18)

Geometric parameters (Å, °)

Pt1—P1	2.2633 (9)	С13—Н13А	0.99
Pt1—P2	2.2517 (9)	С13—Н13В	0.99
Pt1—Cl1	2.3458 (9)	C14—H14A	0.98
Pt1—Cl2	2.3618 (9)	C14—H14B	0.98
P1—C1	1.824 (3)	C14—H14C	0.98
P1—C13	1.830 (4)	C15—C16	1.391 (5)
P1—C7	1.832 (4)	C15—C20	1.397 (5)
P2—C21	1.816 (4)	C16—C17	1.394 (5)
P2—C15	1.820 (4)	C16—H16	0.95
P2—C27	1.835 (4)	C17—C18	1.391 (6)
C1—C6	1.391 (5)	С17—Н17	0.95
C1—C2	1.398 (5)	C18—C19	1.376 (6)
C2—C3	1.387 (5)	C18—H18	0.95
С2—Н2	0.95	C19—C20	1.390 (5)
C3—C4	1.386 (6)	С19—Н19	0.95
С3—Н3	0.95	C20—H20	0.95
C4—C5	1.385 (6)	C21—C26	1.396 (5)
C4—H4	0.95	C21—C22	1.403 (5)
C5—C6	1.394 (5)	C22—C23	1.388 (6)
С5—Н5	0.95	С22—Н22	0.95
С6—Н6	0.95	C23—C24	1.379 (7)
C7—C12	1.395 (5)	С23—Н23	0.95
С7—С8	1.400 (5)	C24—C25	1.390 (6)
C8—C9	1.388 (6)	C24—H24	0.95
С8—Н8	0.95	C25—C26	1.395 (5)
C9—C10	1.385 (7)	С25—Н25	0.95
С9—Н9	0.95	C26—H26	0.95
C10-C11	1.386 (7)	C27—C28	1.537 (5)
С10—Н10	0.95	С27—Н27А	0.99
C11—C12	1.397 (5)	С27—Н27В	0.99
C11—H11	0.95	C28—H28A	0.98
C12—H12	0.95	C28—H28B	0.98
C13—C14	1.529 (5)	C28—H28C	0.98

P2Pt1P1	100 23 (3)	C14—C13—H13B	108.9
P2—Pt1—Cl1	91.45 (3)	P1—C13—H13B	108.9
P1Pt1C11	167 54 (3)	H13A_C13_H13B	107.7
$P2_Pt1_C12$	175 70 (3)	C13 - C14 - H14A	109.5
$P1_Pt1_C12$	82 81 (3)	C13_C14_H14B	109.5
C11 $Pt1$ $C12$	85 30 (3)	H_{14A} C_{14} H_{14B}	109.5
C1 - P1 - C13	105 86 (17)	C13 - C14 - H14C	109.5
C1 P1 C7	103.60(17) 103.62(15)		109.5
$C_1 = 1 = C_7$	103.02(13) 102.05(17)	$H_{14} = C_{14} = H_{14} C_{14}$	109.5
$C_{1} = D_{1} = D_{1}$	102.93(17) 110.20(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5 119.7(2)
$C_1 - r_1 - r_1$	110.29(12) 108.86(12)	$C_{10} = C_{15} = C_{20}$	110.7(3) 124.8(2)
C_{13} $-P_{1}$ $-P_{11}$	108.80(13)	C10-C15-P2	124.0(3)
C/—PI—Pti	123.80 (11)	C20C15P2	116.6 (3)
C21—P2—C15	106.63 (16)	C15-C16-C17	120.4 (3)
C21—P2—C27	100.27 (17)	С15—С16—Н16	119.8
C15—P2—C27	100.92 (17)	С17—С16—Н16	119.8
C21—P2—Pt1	119.05 (12)	C18—C17—C16	120.0 (4)
C15—P2—Pt1	112.12 (11)	C18—C17—H17	120
C27—P2—Pt1	115.72 (13)	С16—С17—Н17	120
C6—C1—C2	118.8 (3)	C19—C18—C17	120.1 (4)
C6—C1—P1	120.9 (3)	C19—C18—H18	120
C2—C1—P1	120.3 (3)	C17—C18—H18	120
C3—C2—C1	120.6 (4)	C18—C19—C20	119.9 (4)
С3—С2—Н2	119.7	С18—С19—Н19	120
C1—C2—H2	119.7	С20—С19—Н19	120
C4—C3—C2	120.2 (4)	C19—C20—C15	120.9 (4)
С4—С3—Н3	119.9	С19—С20—Н20	119.6
С2—С3—Н3	119.9	С15—С20—Н20	119.6
C5—C4—C3	119.7 (4)	C26—C21—C22	119.2 (3)
С5—С4—Н4	120.1	C26—C21—P2	120.9 (3)
C3—C4—H4	120.1	C22—C21—P2	119.5 (3)
C4—C5—C6	120.2 (4)	C23—C22—C21	119.7 (4)
C4—C5—H5	119.9	С23—С22—Н22	120.2
С6—С5—Н5	119.9	C21—C22—H22	120.2
C1—C6—C5	120.5 (4)	C24—C23—C22	121.1 (4)
С1—С6—Н6	119.8	C24—C23—H23	119.4
С5—С6—Нб	119.8	C22—C23—H23	119.4
C12 - C7 - C8	118.4 (3)	$C_{23} - C_{24} - C_{25}$	119.7 (4)
C12_C7_P1	119.4 (3)	$C_{23} = C_{24} = H_{24}$	120.2
$C_{12} = C_7 = P_1$	117.4(3) 122.2(3)	$C_{25} = C_{24} = H_{24}$	120.2
$C_{0} - C_{1} - C_{1}$	122.2(3) 120.6(4)	$C_{23} = C_{24} = 1124$	110 0 (1)
$C_{0} = C_{0} = C_{1}$	110.7	$C_{24} = C_{25} = C_{26}$	119.9 (4)
$C_{2} = C_{3} = 118$	119.7	$C_{24} = C_{25} = H_{25}$	120
$C_{1} = C_{0} = C_{0}^{0}$	119.7	$C_{20} = C_{23} = M_{23}$	120
C10_C9_C8	120.3 (4)	$C_{25} = C_{20} = C_{21}$	120.4 (4)
$C_{10} = C_{9} = H_{9}$	119.8	$C_{23} - C_{20} - H_{20}$	119.0
	119.8	$C_{21} - C_{20} - H_{20}$	119.8
C9—C10—C11	119.8 (4)	$C_{28} = C_{27} = H_{27}$	115.4 (3)
С9—С10—Н10	120.1	C28—C27—H2/A	108.4
C11—C10—H10	120.1	P2—C2/—H2/A	108.4
C10-C11-C12	120.0 (4)	С28—С27—Н27В	108.4

C10-C11-H11	120	Р2—С27—Н27В	108.4
C12—C11—H11	120	H27A—C27—H27B	107.5
C7—C12—C11	120.7 (4)	C27—C28—H28A	109.5
C7—C12—H12	119.7	C27—C28—H28B	109.5
C11—C12—H12	119.7	H28A—C28—H28B	109.5
C14—C13—P1	113.4 (3)	C27—C28—H28C	109.5
C14—C13—H13A	108.9	H28A—C28—H28C	109.5
P1	108.9	H28B—C28—H28C	109.5
P2—Pt1—P1—C1	125.44 (12)	C7—C8—C9—C10	-2.3 (6)
Cl1—Pt1—P1—C1	-75.1 (2)	C8—C9—C10—C11	2.2 (7)
Cl2—Pt1—P1—C1	-57.64 (13)	C9-C10-C11-C12	0.9 (7)
P2—Pt1—P1—C13	-118.82 (13)	C8—C7—C12—C11	3.9 (5)
Cl1—Pt1—P1—C13	40.6 (2)	P1	-177.6 (3)
Cl2—Pt1—P1—C13	58.09 (14)	C10-C11-C12-C7	-4.0 (6)
P2—Pt1—P1—C7	2.09 (14)	C1—P1—C13—C14	167.9 (3)
Cl1—Pt1—P1—C7	161.55 (18)	C7—P1—C13—C14	-83.7 (3)
Cl2—Pt1—P1—C7	179.01 (14)	Pt1—P1—C13—C14	49.3 (3)
P1—Pt1—P2—C21	-67.66 (14)	C21—P2—C15—C16	19.0 (4)
Cl1—Pt1—P2—C21	116.69 (14)	C27—P2—C15—C16	123.3 (3)
Cl2—Pt1—P2—C21	157.7 (4)	Pt1—P2—C15—C16	-112.9 (3)
P1—Pt1—P2—C15	57.73 (13)	C21—P2—C15—C20	-159.4 (3)
Cl1—Pt1—P2—C15	-117.92 (13)	C27—P2—C15—C20	-55.1 (3)
Cl2—Pt1—P2—C15	-76.9 (5)	Pt1—P2—C15—C20	68.7 (3)
P1—Pt1—P2—C27	172.74 (14)	C20-C15-C16-C17	2.6 (5)
Cl1—Pt1—P2—C27	-2.92 (14)	P2-C15-C16-C17	-175.7 (3)
Cl2—Pt1—P2—C27	38.1 (5)	C15-C16-C17-C18	-0.2 (6)
C13—P1—C1—C6	-146.9 (3)	C16-C17-C18-C19	-2.5 (6)
C7—P1—C1—C6	105.2 (3)	C17—C18—C19—C20	2.8 (6)
Pt1—P1—C1—C6	-29.3 (3)	C18—C19—C20—C15	-0.3 (7)
C13—P1—C1—C2	32.5 (3)	C16-C15-C20-C19	-2.3 (6)
C7—P1—C1—C2	-75.5 (3)	P2-C15-C20-C19	176.1 (3)
Pt1—P1—C1—C2	150.1 (3)	C15—P2—C21—C26	-138.3 (3)
C6—C1—C2—C3	-0.2 (5)	C27—P2—C21—C26	117.0 (3)
P1—C1—C2—C3	-179.6 (3)	Pt1—P2—C21—C26	-10.3 (3)
C1—C2—C3—C4	-1.1 (6)	C15—P2—C21—C22	49.4 (3)
C2—C3—C4—C5	1.4 (6)	C27—P2—C21—C22	-55.4 (3)
C3—C4—C5—C6	-0.5 (6)	Pt1—P2—C21—C22	177.3 (3)
C2—C1—C6—C5	1.1 (6)	C26—C21—C22—C23	1.3 (6)
P1-C1-C6-C5	-179.5 (3)	P2-C21-C22-C23	173.9 (3)
C4—C5—C6—C1	-0.8 (6)	C21—C22—C23—C24	0.2 (6)
C1—P1—C7—C12	-58.4 (3)	C22—C23—C24—C25	-0.6(7)
C13—P1—C7—C12	-168.6 (3)	C23—C24—C25—C26	-0.7 (6)
Pt1—P1—C7—C12	67.8 (3)	C24—C25—C26—C21	2.3 (6)
C1—P1—C7—C8	120.0 (3)	C22—C21—C26—C25	-2.6 (6)
C13—P1—C7—C8	9.8 (3)	P2-C21-C26-C25	-175.0 (3)
Pt1—P1—C7—C8	-113.8 (3)	C21—P2—C27—C28	-51.3 (3)
C12—C7—C8—C9	-0.8 (6)	C15—P2—C27—C28	-160.6 (3)
P1—C7—C8—C9	-179.2 (3)	Pt1-P2-C27-C28	78.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C13—H13B…Cl2	0.99	2.78	3.278 (4)	112
C18—H18····Cl2 ⁱ	0.95	2.75	3.539 (4)	141
C27—H27A…Cl1 ⁱⁱ	0.99	2.74	3.622 (4)	149
C27—H27B…Cl1	0.99	2.74	3.185 (4)	108
C28—H28A…Cl1	0.98	2.70	3.373 (5)	126
\mathbf{C}_{i}	1/2 = 1/2			

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) –*x*+1, *y*-1/2, –*z*+1/2.

Fig. 1